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A mechanical model is developed of a tapered, "lament-wound composite,
Timoshenko shaft which is rotating at constant speed about its axis. The model
represents an extended length cutting tool intended for use in high-speed
operations. The e!ects of shaft tapering and the use of composite materials on the
structure's free response are studied. The spatial solutions to the equations of
motion are carried out using the general Galerkin method. It is found that by
tapering, bending natural frequencies and sti!ness can be signi"cantly increased
over those of uniform shafts having the same volume and made of the same
material. The potential for designing a taper function to meet a particular cutting
need is also discussed. Various composite laminate cases are treated and it is found
that improvements of performance are possible over equivalent steel shafts.

( 1999 Academic Press
1. INTRODUCTION

Vibration of the cutting tool in boring and milling operations can make it very
di$cult to meet surface "nish and dimensional accuracy requirements of the
workpiece, can generate excessive amounts of noise and can lead to premature tool
failure. The vibration is mainly induced and maintained by forces generated by the
cutting process itself and can be a problem of dynamic instability. So, the in#uence
of the cutting tool structure on the dynamic response in the cutting process is of
great importance.

Increasing the static bending sti!ness of the cutting tool can be desirable because
insu$cient static bending sti!ness is responsible for poor machining accuracy
[1, 2]. Also, higher natural frequencies of the cutting tool are bene"cial [3] when
one is operating at cutting frequencies less than the fundamental frequency. Thus,
2-460X/99/360125#23 $30.00/0 ( 1999 Academic Press



126 W. KIM E¹ A¸.
increases in the structural static bending sti!ness and "rst bending natural
frequency can have bene"cial e!ects.

One of the possible methods of reducing vibration is structural redesign. By
tapering the rotating shaft of the machine tool, the static bending sti!ness and the
"rst bending natural frequency can be higher than those of a non-tapered
cylindrical shaft which has the same volume. Also, di!erent materials can be used.
Fiber-reinforced composite materials have recently received great interest in the
machine tool industry [4, 5] because of low weight, high sti!ness-to-weight ratio
and damping characteristics.

The free and forced vibration of rotating, uniform, isotropic shafts has been
widely studied in detail in the "eld of rotor dynamics for various shaft models and
boundary conditions (see, for example, reference [6]). Vibration of rotating,
tapered, isotropic material shafts has also been studied. See, for example, the
development of "nite element methods by Rouch and Kao [7] and Genta and
Gugliotta [8]. The work of Maday [9] on the design of minimum weight rotating
shafts, using a minimum principle, should also be noted. Fewer works are available
for rotating composite material shafts. Uniform cases have recently been treated in
references [10}12]. In these studies, coupling e!ects due to anisotropic properties
of composite materials were investigated. Regarding non-uniform rotating
composite structures, one available work is that of Bauchau [13] on hollow shafts
in which optimization of the wall-thickness tapering is treated using Rayleigh
quotient ideas. In the present work, a mechanical model is developed of a tapered,
"lament-wound composite, Timoshenko shaft which rotates at constant speed
about its axis. The spatial solutions are obtained using the general Galerkin
method. Numerical results are presented for steel and high modulus graphite/epoxy
shafts. The model includes bending, torsional and extensional vibrations.

2. DERIVATION OF THE EQUATIONS OF MOTION

The use of layered composite materials and tapering leads to considerable
complications in the derivation of the equations of motion. Here, the main
modelling issues are highlighted and speci"c lengthy manipulations are omitted in
the interest of space.

Figure 1 shows a portion of a tapered shaft rotating at a constant angular speed
X about its axis, z (in the undeformed state). The shaft is taken to be transmitting an
axial force P, a torque ¹, shear forces<

x
and <

y
and bending moments M

x
and M

y
.

These stress resultants can be determined once the stress distribution is known.
For example

M
x
"P

A

yp
z
dA. (1)

Figure 2 shows a single lamina (layer) wrapped around a tapered cylinder of
taper angle a (which could be a function of z). The axes 1@ and 3@ are along and
perpendicular to the cylinder surface, respectively. Material principal directions are
denoted by 1, 2, 3, the "ber angle b being the angle between the 1 and 1@ axes.



Figure 1. Portion of a tapered shaft rotating at a constant speed X about the z-axis.
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The stress}strain relations with respect to the cylindrical co-ordinate system
r, h, z are required and are found by a sequence of transformations. For the
material co-ordinate system one has (superscript T denotes transpose)

[p
11

p
22

p
33

q
23

q
31

q
12

]T"[C
ij
] [e

11
e
22

e
33

c
23

c
31

c
12

]T, (2)

where the C
ij

are known functions of the layer material parameters (see Jones [14]).
The 1, 2, 3 axes are related to the 1@, 2@, 3@ axes by a rotation matrix [¹b] and using
this the primed and unprimed stresses and strains can be related. Then the primed
components are transformed to r, h, z components by means of a rotation matrix
[¹a]. The end product is a result of the form

[p
r
ph p

z
qhz q

zr
q
rh]T"[K

ij
] [e

r
eh e

z
chz c

zr
c
rh]T, (3)

where the K
ij

are complicated functions of a, b and layer material properties and
are given in Appendix A.

A goal of the work is the development of a beam type theory for the problem at
hand, rather than the pursuit of elasticity solutions (which are unlikely to exist) or
shell theories. In this spirit, some approximations have to be made. Since q

2{3{
is

zero on the lateral surface and the shaft is taken to be slender, it is assumed that
q
2{3{

,0. Using transformation equations, this condition gives

q
rh"!qhz tan a. (4)

In beam theories, p
r
and ph are typically set to zero. In this work, it is expected that

the high rotational speeds may produce signi"cant values of these stress



Figure 2. Single lamina of a tapered, "lament-wound composite shaft.
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components and so they are retained in the formulation. For the moment, their
speci"c forms are left unspeci"ed but they are assumed to be axisymmetric.
Substituting the fourth and sixth equations of equations (3) into equation (4) gives
a relationship between the six strains. Using this relationship and the "rst and
second equations of equations (3), e

r
, eh and c

rh may be expressed in terms of e
z
, chz ,

c
zr

, p
r
and ph . Using the resulting expressions, the third, fourth and "fth equations

of equations (3) lead to expressions of the form (a superscript k has been added to
denote that the expressions are for the kth layer)

[p(k)
z

q(k)hz q(k)
zr

]T"[KM (k)
ij

] [e(k)
z

c(k)hz c(k)
zr

]T#[CM (k)
ij

] [p(k)
r

p(k)
h ]T, (5)

where [KM (k)
ij

] and [CM (k)
ij

] are known matrices (details are not given).
A Timoshenko model is adopted for the transverse vibrations. It is assumed that

the entire cross-section perpendicular to the z-axis remains a plane after
deformation. Figure 3 shows a projection of a deformed element onto the xz-plane
(a prime denotes a derivative with respect to z). From this "gure and a similar one
for the yz-plane, it follows that
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Here u
x
, u

y
, u

z
are displacements of the neutral axis in the x, y, z directions,

respectively, t
x
and t

y
denote rotation angles about the y- and x-axis, respectively,

and / is the angle of twist. Note that it has been assumed that warping of the
cross-section, if it exists, is negligibly small.



Figure 3. Projection of a deformed element onto the xz-plane.
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In Timoshenko beam theory, so-called shear coe$cients are frequently
introduced as &&adjustment factors''. The choice of their values is problematical,
particularly for problems such as the one at hand involving composite materials
and tapering. Here shear coe$cients are incorporated into the theory as follows.
Equations (7) and (8) may be written as

c
zr
"c

zrB
, chz"chzB#chzT , (9, 10)

where
chzT"r/@. (11)

The subscripts B and ¹ refer to bending and torsional contributions, respectively.
With this notation, equation (5) may be written as
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and i is a Timoshenko shear coe$cient (taken to be the same for both bending
planes). It is a function of z and its value will be discussed later.

For the general case of an N-layered laminate (see Figure 4), one has

M
x
"

N
+ PA(R)

yp(k)
z

dA.

k/1



Figure 4. N-layered laminate.
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Using equations (6)}(14) and noting the assumed axisymmetry of p
r
, ph , integration

leads to
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where
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where
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In Timoshenko beam theory, rotatory inertia is accounted for by treating
a di!erential element (length dz) as if it were a thin rigid disk rotating with X (about
the z-axis) and the derivatives of the bending slopes tQ

x
, tQ

y
. Using the small-angle

approximations cos t
x
, cos t

y
+1, sin t

x
+t

x
, sin t

y
+t

y
it can be shown that

the moment MM about the center of the disk is given by (i, j and k denote unit vector
along the x-, y- and z- axis, respectively)

MM "M(I tG #I XtQ ) i#(I tG !I XtQ ) j#(I /G )kN dz. (34)

x y z x y x z y z
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The inertia force FM of the center of disk is given by
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y
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In these expressions, I
x
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denote mass moments of inertia per unit length

and m is the mass per unit length. Allowing the inclusion of a discrete mass, m
c
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where o(k) is the layerwise mass density (as given by the rule of mixtures) and
d denotes the Dirac delta function. Using equations (15), (19)}(23), (34) and (35), the
equilibrium of a di!erential element can be shown to lead to
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where f
x
, f

y
and f

z
are applied forces per unit length and t

z
is an applied torque per

unit length. Note that the bending motions are coupled through gyroscopic e!ects
and material e!ects, but are not coupled to extensional and torsional motions,
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whereas the latter two are coupled only by material e!ects. Note also that p
r
and ph

have not, as yet, been speci"ed. However, due to their assumed axisymmetry they
in#uence only K

TX and K
PX [see equations (30) and (33)], which, as equations (44)

and (45) show, in turn in#uence only the forced extensional and torsional responses.
This issue will be addressed in a subsequent paper [15].

The shaft is taken to be clamped-free, the boundary conditions for which are
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3. GENERAL GALERKIN METHOD

Analytic solutions to equations (40)} (45) are not feasible and here recourse is
made to Galerkin's method. One takes
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The Galerkin functions, m
n
, for the bending variables u

x
and u

y
are taken to be the

mode shapes of a uniform, non-rotating, isotropic, "xed-free Euler}Bernoulli beam,
namely
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The Galerkin functions, a
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, for the angular deformations t
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to be
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Note that m
n
and a

n
satisfy the geometric boundary conditions of the problem, as

given by equation (46).
The extensional and torsional Galerkin functions are taken as
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which satisfy the geometric boundary conditions given by equation (47).
The Galerkin functions chosen do not satisfy the boundary conditions given by

equations (48)}(53) and so the general Galerkin method is employed here (see
Leipholz [16]). In this method, boundary residuals as well as di!erential equation
residuals are treated as follows.

Substituting equations (54)}(57) into equation (40) gives an expression of the
form
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Multiplying this by m
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and integrating from 0 to ¸ gives
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The associated boundary condition (48) is handled by substituting equations
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In the general Galerkin method, one takes
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The end product of the procedure is a set of equations of the form
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where
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The elements of the matrices in equations (86)}(90) are given in Appendix B. The
force-like terms in equations (84) and (85) are given by
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4. NUMERICAL RESULTS

At this stage, a choice has to be made on how the Timoshenko shear coe$cients
are to be determined. There are numerous schemes in the literature for their
determination. The approach adopted here is based on that of Dharmarajan and
McCutchen [17] who, generalizing Cowper's method [18], showed that for an
orthotropic, hollow circular beam (inner radius a, outer radius b), i is given by

i"
6E

zz
(1!mN 4) (1#mN 2)

G l (2mN 6#18mN 4!18mN 2!2)!E (7mN 6127mN 4!27mN 2!7)
, (97)
zx zx zz



Figure 5. Timoshenko shear coe$cient versus a/b ratio: K, i
steel

; L, i
composite

; **, i
average

.

Figure 6. Linearly tapered hollow shafts: a"1)73, b
1
!a

1
"5)4 mm, a

2
"1 mm, b

2
"D

2
/2"

6)4 mm; rotational speed"400 rad/s.
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where mN "a/b. (The bold-faced sign in equation (97) is minus in reference [17]
which we believe to be a typographical error. Also, to be consistent with our
notation, we have replaced their l

xz
by l

zx
.) For composite material (03 high

modulus graphite/epoxy) and steel, a plot of i, as given by equation (97), versus a/b
is given in Figure 5. In this "gure, the solid line is the average Timoshenko shear
coe$cient, i

average
, of i

composite
and i

steel
. The properties of the composite are

(obtained from reference [19]): E
zz
"192 GPa, G

zx
"4)07 GPa, l

zx
"0)24.

Consider numerical examples involving a linear taper as illustrated in Figure 6.
The bending natural frequencies are obtained from the homogeneous version of
equation (84). When a beam rotates, each non-rotating bending frequency branches
into two. In the sequel, &&lowest bending frequency'' refers to the smaller of these two
frequencies. The lowest bending frequency, as determined by both Timoshenko and
Rayleigh beam theories, of the composite (03) shaft as a function of the ¸/D

2
ratio is

shown in Table 1. Three Galerkin functions were used and found to be su$cient for



TABLE 1

The lowest bending frequency (Hz) of the composite (03) shaft

¸/D
2

ratio i"i
average

i"i
composite

i"i
steel

Rayleigh

5 4900)5 4870)6 (!0)61%) 4929)0 (0)58%) 7009)3 (43)0%)
10 1983)9 1976)3 (!0)38%) 1991)2 (0)37%) 2340)5 (18)0%)
20 824)5 822)5 (!0)24%) 826)4 (0)23%) 898)2 (8)9%)

TABLE 2

The lowest bending frequency (Hz) of the composite (203) shaft

¸/D
2

ratio i"i
average

i"i
composite

i"i
steel

Rayleigh

5 3392)8 3382)9 (!0)29%) 3402)3 (0)28%) 5360)0 (58)0%)
10 1198)2 1196)2 (!0)17%) 1200)1 (0)16%) 1789)7 (49)4%)
20 462)5 461)9 (!0)13%) 463)0 (0)11%) 686)8 (48)5%)

TABLE 3

The lowest bending frequency (Hz) of the steel shaft

¸/D
2

ratio i"i
average

i"i
composite

i"i
steel

Rayleigh

5 3199)4 3197)2 (!0)07%) 3201)5 (0)07%) 3331)4 (4)1%)
10 1093)6 1093)3 (!0)03%) 1094)0 (0)04%) 1112)3 (1)7%)
20 423)4 423)3 (!0)02%) 423)5 (0)02%) 426)9 (0)8%)
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convergence. To assess sensitivity of the frequency to the choice of i, the three
values of i seen in Figure 5 were used, namely i

composite
, i

steel
and i

average
for all

cases. Note that i is a function of z because the a/b ratio is varying along the z-axis.
As shown in Table 1, the natural frequency values are to a large degree insensitive
to the choice of i. At ¸/D

2
"5, the frequencies di!er by !0)61% (i"i

composite
)

and 0)58% (i"i
steel

) compared to the i"i
average

case. These drop to !0)24%
(i"i

composite
) and 0)23% (i"i

steel
) at ¸/D

2
"20. Similar results for the composite

(203) shaft and the steel shaft are shown in Tables 2 and 3 respectively.
Some comments should be made about Table 2 since it contains results for

generally orthotropic shafts. To the authors' knowledge no result like equation (97)
valid for more general anisotropy is available. Teh and Huang [20] considered
general rectilinear orthotropy. They showed that the di!erence in i between 03 and
903 was less than 1% for graphite/epoxy. In Table 2, the anisotropy is curvilinear
but it is still assumed that i as given by the 03 case [equation (97)] holds for all
con"gurations.

In the light of the foregoing results, it is felt that the results are insensitive to the
choice of i within an acceptable level of accuracy. With this in mind the strategy
used is as follows. Figure 5 shows that the dependence of i on material values plays



ROTATING COMPOSITE SHAFT 139
a secondary role to the geometry, so the same value of i, namely, i
average

, is used for
all layers even though di!erent materials and "bre angles are used.

A point to be noted from these tables is that the di!erences between the
Timoshenko and Rayleigh beam theories for ¸/D

2
"5 are 43% for 03 composite,

58% for 203 composite and 4)1% for steel. These drop to 8)9% (03 composite),
48)5% (203 composite) and 0)8% (steel) at ¸/D

2
"20. The large shear e!ect that

occurs in the 203 composite case even for the large (¸/D
2
"20) slenderness ratio

is due to coupling between bending in the xz-plane and shearing in the yz-plane
(i.e., c

yz
) that exists for this shaft.

Some results regarding the lowest natural frequencies and the static sti!nesses for
bending and torsion will now be presented for various taper versions of the three
equivolume shafts described in Figure 7. All shafts have the same length and
thickness. The tapers are linear and ¸/(b

1
#b

2
)"12. The lowest non-dimensional

bending frequency (u
b
) is shown in Figure 8(a) as a function of the taper

ratio [¹R"100(b
1
!b

2
)/¸]. Non-dimensionalization (bending, torsional as

appropriate) is achieved by dividing by the lowest value for the zero taper ratio
case. The rotational speed is 400 rad/s. It is seen that the frequencies can be
increased by the use of composite materials. This increase would be bene"cial for
rotational speeds operating below the lowest natural frequency. Another way to
view this bene"t is as follows. Consider a non-tapered shaft operating at a certain
frequency. By the use of composite materials, a shaft can be made with the same
frequency and diameter, but with a greater length. This increase in length is
bene"cial in that it allows a wider range of applications. Figure 8 also shows that
tapering increases the frequencies. Thus, tapered shafts having the same frequency
but smaller diameter (over a portion of their length) than non-tapered shafts can be
designed. This also results in a wider range of applications. In all four cases, the
frequencies at a taper ratio of 3 are increased by approximately 70% compared
with the uniform (¹R"0) case. Also, all shafts containing composite materials
show increased bending frequency and reduced mass compared to the steel shaft.
For example, at taper ratio 2, the steel/03 composite shaft results in a 41% higher
frequency than the pure steel shaft, while reducing the mass by 50%. Similar trends
are seen in Figure 8(b) for cases having ¸/(b

1
#b

2
)"6 (inner and outer radii are

doubled, keeping the same length).
In Figures 8(a, b), dotted lines indicate results obtained from the Rayleigh beam

theory for the hollow composite shaft. The di!erences between the Timoshenko
and Rayleigh theories are approximately 5% for ¸/(b

1
#b

2
)"12. This is increased

to 16% for ¸/(b
1
#b

2
)"6.

Some results on the e!ect of rotational speed will now be presented in the form of
Campbell diagrams. Figures 9(a, b) show the "rst-mode bending frequency pairs as
functions of rotational speed for a variety of cases. The composite layering
and material properties are taken from Figure 7 and two length cases are
treated: ¸/(b

1
#b

2
)"12*Figure 9(a) and ¸/(b

1
#b

2
)"6*Figure 9(b).

Non-dimensionalization is achieved using the value (u
s
) of the steel shaft at X"0

[u
s
"1735 rad/s for ¸/(b

1
#b

2
)"12 and 3406 rad/s for ¸/(b

1
#b

2
)"6]. In

general, if X is increased from 0, two natural frequencies occur for each mode. The
higher value usually corresponds to a mode in which the shaft precesses in the same



Figure 7. Simulation cases (¸/(b
1
#b

2
)"12, m

c
"I

c
"0): (a) hollow steel shaft (here shown

non-tapered), mass"458 g, length ¸"240 mm, t
s
"5)4 mm, b

1
"b

2
"10 mm, material properties

(o"7700 kg/m3, E"207 GPa, G"80 GPa); (b) hollow composite shaft [here shown having linear
taper ratio (¹R)"100(b

1
!b

2
)/¸"2)0], 36 layers (0

6
/90

3
/$20

3
/0

6
/G20

3
/90

3
/0

6
), mass"96 g,

¸"240 mm, t
c
"5)4 mm, b

1
"12)4 mm, b

2
"7)6 mm, high modulus graphite/epoxy

(o"1610 kg/m3, E
1
"192 GPa, E

2
"7)24 GPa, G

12
"4)07 GPa, G

23
"3)0 GPa, l

12
"0)24);

(c) composite shaft with steel core (here shown having ¹R"3)0), two 20 layer cases treated [(0)
20

and
($20)

10
], mass"224 g, ¸"240 mm, t

c
"3 mm, t

s
"2)4 mm, b

1
"13)6 mm, b

2
"6)4 mm.

Figure 8. The lowest non-dimensional bending frequency versus taper ratio when
(a) ¸/(b

1
#b

2
)"12 and (b) ¸/(b

1
#b

2
)"6:*, Timoshenko beam; - - - --, Rayleigh beam; d, hollow

composite: j, steel/03 composite; m, steel/$203 composite; ], steel.
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direction as the shaft's spin and so is called the forward precession. Likewise, the
lower value usually represents a backward precessing mode. Note that the
di!erence between forward and backward modes of the Timoshenko beam is
slightly larger than that of Rayleigh beam. The di!erences at X"15 000 rad/s
[X/u

s
"8)6 in Figure 9(a)] are 2% (Timoshenko) and 0)4% (Rayleigh) for the

non-tapered hollow composite shaft having ¸/(b
1
#b

2
)"12. These [at X/u

s
"4)4

in Figure 9(b)] are increased to 3% (Timoshenko) and 0)9% (Rayleigh) for
¸/(b

1
#b

2
)"6. For all X in the range 0}15 000 rad/s, the forward and backward

modes of the shafts containing the composite are higher than the steel shaft modes.
Also, it is seen that the tapered shaft (¹R"3) frequencies are higher than those of
the uniform shaft (¹R"0) for the steel/$203 composite case.



Figure 9. Campbell diagram when (a) ¸/(b
1
#b

2
)"12 and (b) ¸/(b

1
#b

2
)"6; *, Timoshenko

beam; - - - --, Rayleigh beam; d, hollow composite; j, steel/03 composite; m, steel/$203 composite;
], steel.

Figure 10. The non-dimensional static bending sti!ness versus taper ratio when ¸/(b
1
#b

2
)"12;

d, hollow composite; j, steel/03 composite; m, steel/$203 composite; ], steel.

ROTATING COMPOSITE SHAFT 141
The non-dimensional static bending sti!nesses (K
b
), de"ned by the quotient of

a point force at z"¸ and the resulting static tip de#ection, are shown in Figure 10.
Another bene"cial feature noted is that, the static bending sti!nesses are increased
by shaft tapering in all cases. Bollinger [1] recorded that this trend can be bene"cial
for machining accuracy. The sti!ness of the steel/03 composite shaft is slightly lower



Figure 11. The lowest non-dimensional torsional frequency versus taper ratio when ¸/(b
1
#b

2
)"

12; d, hollow composite; j, steel/03 composite; m, steel/$203 composite; ], steel.

Figure 12. The non-dimensional static torsional sti!ness versus taper ratio when ¸/(b
1
#b

2
)"12;

d, hollow composite; j, steel/03 composite; m, steel/$203 composite; ], steel.
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than that of the steel shaft; however, the mass of the steel/composite shaft is only
one-half that of the steel shaft, as already noted.

Torsional natural frequencies can be obtained from the homogeneous version of
equation (85). The lowest non-dimensional torsional frequency (u

t
) as a function of

taper ratio is shown in Figure 11 for a rotational speed of 400 rad/s. Taper tends to
increase the frequencies in all cases. The cases containing steel have higher natural
frequencies than the pure composite case due to the high torsional modulus of steel;



Figure 13. Outer radii of the non-tapered shaft A, the exponentially tapered shafts B and C, and the
linearly tapered shaft D as functions of z.
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however, the steel/$203 composite case has the highest natural frequencies for all
taper ratios. The non-dimensional static torsional sti!ness (K

t
), de"ned by

the quotient of a point torque at z"¸ and the resulting tip rotation, is shown in
Figure 12. The torsional sti!ness is decreased compared to steel by using composite
material and also decreased by tapering. Whether such trends are detrimental or
bene"cial, and the overall roles of torsional sti!ness and response on cutting
accuracy are not clear from the literature (see references [21, 22], for example) and
warrant further investigation.

E!ects of exponential tapering were also studied. In Figure 13, comparisons are
made between a non-tapered shaft A, a linearly tapered shaft D (¹R"3) and
exponentially tapered shafts B and C. All four shafts are hollow composite
(0

6
/90

3
/$20

3
/0

6
/G20

3
/90

3
/0

6
) having the same length (240 mm), thickness

(5)4 m), and volume (59 cm3). The outer radii of shafts B and C are given by
(b

1
!b

2
)e~sz#b

2
, where b

1
"13)6 mm, b

2
"9)52 mm and s"40 for shaft B, and

b
1
"13)6 mm, b

2
"8)99 mm and s"20 for shaft C. The non-dimensional static

sti!nesses for bending (K
b
) and torsion (K

t
), the lowest non-dimensional bending

frequency (u
b
), and the lowest non-dimensional torsional frequency (u

t
) are shown

in Table 4. Non-dimensionalizations are achieved by dividing by the shaft A values.
Convergence of the lowest natural frequencies necessitates "ve Galerkin functions
for the exponentially tapered cases compared with three for the linearly tapered
case. The frequencies and sti!ness are seen to vary with the degree of tapering and
lie between the non-tapered and linearly tapered values. A potential bene"t to the
use of exponential tapering lies in their inherent design #exibility. For example, in
Figure 13, the portion of the shaft having a diameter smaller than the non-tapered



TABLE 4

E+ects of exponential tapering

Bending Torsion

Shaft Frequency, u
b

Sti!ness, K
b

Frequency, u
t

Sti!ness, K
t

A 1)00 1)00 1)00 1)00
B 1)14 1)14 1)12 0)94
C 1)26 1)23 1)23 0)89
D 1)66 1)58 1)63 0)63
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case is extended in the exponentially tapered cases compared to the linearly tapered
case. Taper functions can be designed to extend this length to achieve speci"c
internal cutting operations.
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"C

44
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45
"(C
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) sinb cosb, QM
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"C
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sin2b#C
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cos2b,

QM
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"(C
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#C
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!2C

12
!2C

66
) sin2b cos2b#C

66
(sin4b#cos4b).

APPENDIX B: MATRIX COEFFICIENTS IN EQUATIONS (86)}(90)

Given here are the coe$cients of the matrices in equations (86)}(90):
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For the numerical results presented, these coe$cients are evaluated numerically
using MAPLE.
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